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SUMMARY 
An extension of the Osher upwind scheme to non-equilibrium reacting flows is presented, Owing to the 
presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate 
solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution 
is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical 
computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. 
The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious 
numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present 
method, a change of limiter causes the solution to change from the physically correct CJ detonation solution 
to the spurious weak detonation solution. 
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1. INTRODUCTION 

Upwind schemes for solving the Euler equations of fluid dynamics have become very popular 
over the last decade owing to their excellent shock-capturing capabilities. Essentially, an upwind 
code consists of an interpolation procedure coupled with an approximate Riemann solver (ARS). 
Typically, the interpolation procedure reconstructs the variables within a computational cell, 
enforces some non-oscillatory constraint and necessarily introduces discontinuities at the cell 
interface. The role of the ARS is to evaluate the flux at the interface given the fluid states to the left 
and right of the interface. As the name suggests, this is done by solving a one-dimensional 
Riemann problem normal to the interface, an idea originally due to Godunov.’ Since then 
a number of ARSs have become popular such as the Steger-Warming solver (SWS),2 the van Leer 
solver (VLS),3 the Roe solver (RS)4 and the Osher solver (OS).’ 

The Osher ~ o l v e r , ~ . ~  which is the subject of this paper, has certain attractive features as 
compared to the other solvers. It is an extension of the Engquist-Osher’ scheme for scalar 
hyperbolic conservation laws. The 0s computes an interface flux which is a smooth function of 
the left and right states (which is not the case for the RS and SWS) and also statisfies the entropy 
inequality (in contrast to the RS which requires an entropy fix). On the other hand, its resolution 
on contact discontinuities is superior to the VLS and matches the resolution obtained with the 
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RS. For slowly moving shock waves Roberts* discovered that the 0s gave the least post-shock 
oscillations of all these schemes. The main drawback of the 0s seems to be its higher operation 
count and complexity in programming, which make it roughly 15%-60% more expensive than 
the RS. Despite this, it is our view that the superior qualities mentioned above make the extension 
of the 0s to include general chemistry a worthwhile and useful thing to do. 

Hypersonic flow is seeing a renewal of interest owing to advanced propulsion concepts such as 
the NASP, the Space Shuttle and future civil transport concepts. Such flows are generally 
accompanied by changes in the chemistry of the gas. It is here that upwind schemes with their 
excellent shock-capturing properties become invaluable. With the exception of the OS, all the 
above ARSs have been extended9-13 to gases with a general equation of state and to gases in 
chemical non-equilibrium. This paper is a sequel to a previous paper of ours14 in which the Osher 
scheme was extended to include gases with a general equation of state. Here we present an 
extension of the Osher scheme to flows which are in chemical non-equilibrium, i.e. where chemical 
reactions are taking place on the same time scale as the transit time of fluid particles. More 
precisely, if k denotes the reaction rate, L a characteristic length and u a characteristic velocity, we 
are concerned here with the case where the Damkohler number kL/u is of the order of unity. 
Examples of such flows include detonation phenomena, hypersonic flows of air and acous- 
tic-flame interactions. 

Upwind schemes for such flows, which are characterized by the presence of source terms on the 
right-hand side, have been developed and studied by several authors in recent times. LeVeque and 
Yee" study the effects of stiff source terms on scalar convection and observe incorrect speeds of 
propagation. Larrouturou and Fezoui" describe an extension of the Osher scheme to multi- 
species inert mixtures where the effects of chemical reactions are ignored. The extension of the 
Roe scheme"*13 to such flows turns out to be a one-parameter family with no clear theoretical 
choice between them, although several work well in practice. Another approach is by Ben-Artzi,I6 
who constructs an approximate solution to the generalized Riemann problem (GRP) (i.e. where 
the left and right states are piecewise linear) for such flows which is then used in a Godunov-type 
solver. Below we follow his notation and our second test problem is identical to his ZND 
detonation case. 

In the rest of this paper we first discuss mixtures of perfect gases and reaction kinetics. In 
Section 3 we present the basic first-order explicit Osher scheme. A crucial element of this scheme 
is the determination of the intermediate states and sonic points, which are described in Section 4. 
In Section 5 we show how the results for the binary mixture can be easily extended to include an 
arbitrary number of species. Incorporation of these split flux formulae in a TVD algorithm and 
application to a few typical problems are described in Section 6 and our conclusions are to be 
found in Section 7. 

2. PERFECT GAS MIXTURES 

In this paper the fluid medium is assumed to be a mixture of perfect gases. The gas is assumed to 
be in thermal equilibrium, which implies the same temperature for all species. Diffusion effects are 
also neglected throughout the paper. For the kth species the mass fraction, molecular weight, 
specific heat at constant pressure and specific heat at constant volume will be denoted by 
zk,  M k ,  Cpk, and Cvk respectively. By the perfect gas assumption Cpk and Cvk are constants and 
satisfy 

Mk ( c p k  - Cvk = R,  (1) 
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where R is the universal gas constant. If T and p denote the temperature and density of the 
mixture respectively, the total pressure p of the mixture is given by Dalton's law as 

For hypersonic applications, chemical reactions are often accompanied by energy release. These 
are included in the specific internal energy of the mixture, which can be written as 

n 

e = x z k ( c v k  T+  h: ), 
k =  1 

where h f  are the specific heats of formation. It is convenient to write equation (3) as 
n 

e=&+ 1 Zkh:. 
k =  1 

The pressure p can then be written as 

(3) 

(4) 

where y stands for the ratio of specific heats of the mixture, given by 

Note that y is a function of zi only. The rates of the chemical reactions can be written as 

where x s = , J i ' = O ,  since ~ ~ = l z i = l .  

3. EULER EQUATIONS FOR REACTING FLOWS 

For simplicity, we will first restrict ourselves to a binary mixture consisting of reactants and 
products and present the extension to several species in Section 5. Following the notation of 
Reference 16, z1 = z  denotes the mass fraction of the reactants, 1 - z  the mass fraction of the 
products andf, =- k(z, p ,  p )  the reaction rate. The reaction is assumed to be irreversible, so that 
k 2 O .  Under these assumptions the ID Euler equations take the farm 

where 

U = [ P ,  pu,pE,  PzI', F = [ p u ,  ~ ~ + p , ( p E + p ) u , p u z ] ' ,  S=[O,O,O,-pk]' ,  
with E = e + u2/2,  e = 2-  z A h  + h; and A h  = h; - hy denotes the heat release. 

The eigenvalues of the hyperbolic system given by (8) are 

1, =u-a ,  A 2 , 3 = u ,  A4=u+a, 

where a is given by 
a = Y (Z)P/P. 
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Equation (8) is spatially discretized in conservation form as 

In a Godunov-type scheme, when Si=O, the interfacial flux F i + l , 2  is obtained by solving 
a Riemann problem locally between U i  and U i +  and the value of F i +  is simply the value of the 
flux on the t-axis. In the Osher scheme using the natural order, this is done approximately by 
connecting U i  to U i +  via a sequence of simple waves. This solution is exact when shocks are 
absent and is second-order-accurate for weak shocks, because the transition via compression 
waves and the transition through weak shocks differ only by terms third-order in the shock 
strength. For strong shocks this is still a good initial guess for the iterative exact solution. The 
formula for Fi+ 1 1 2  in the Osher scheme which results is 

where 1 A I = A  + -A  - is the matrix based on the absolute value of the flux Jacobian and the 
iptegration is carried out along the sequence of simple waves shown in Figure 1. The advantage of 
this path is that once the intermediate states and the sonic points are known, the integral can be 
evaluated in closed form. For example, along a wave from UL to UR corresponding to a non- 
degenerate eigenvalue, the integral is 

F( UR)- F( UL) if A( UR) > 0, A( UL) > 0, 
F(CJ,)-F(U,)  if 4 U R ) > 0 ,  A(UL)<O, 

["A+dCJ={ F ( U , ) - F ( U d  if I(UR)<O, A(UL)>0, 
0 if A(UR)<O, A(UL)<O, 

where U s  is the unique sonic point between UR and CJ,. Similarly, if the wave corresponds to 
a degenerate eigenvalue, then the integral is 

(14) 
U L  

F(CJR)-F(UL) if A(UR)=A(UL)>O, 1"; A+dU={ if A(UR)=A(CJL)<O, 
Thus equation (13) reduces to a sum of integrals of the form (14) and (15) over the various 

intermediate points. From a flux-difference-splitting point of view it is also possible to interpret 

J - 1  J 

= grid points 

A = intermediate points 

Figure 1. Schematic representation of the integration paths in the Osher scheme for reacting flow 
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these integrals as positive and negative flux differences. Thus the positive flux difference denoted 
by A+Fi+ is defined as 

ui+, IUi A + d U  A'F: = 

and is a sum of three integrals of the form (14) and (15). Similarly, 

A+F; =juyi' A-dU 

is the negative flux difference between i and i+  1. These flux differences are used in the extension 
to second order presented below. 

Owing to the inhomogeneous source term, the Riemann problem for (8) is no longer self- 
similar, i.e. the wavefronts are not rays through the origin. Thus, within the framework of 
Godunov schemes the interfacial flux is not constant on the t-axis but varies along it. To correctly 
account for the source term, it is also necessary to consider at  least piecewise linear distributions 
of the data, since constant data are no longer in equilibrium. This is in fact the approach of 
Ben-Artzi,16 who constructs an approximate solution for GRP in the vicinity of the origin and 
uses this solution to derive the interfacial flux. 

In contrast, we wish to follow the simpler procedure of solving the Riemann problem as though 
the source terms were absent (called the associated Riemann problem (ARP)) and then adding in 
the source terms before advancing to the next time step. While it is quite clear that such 
a procedure neglects the interactions between acoustic waves and chemical reactions, it is also 
true that the source terms do not change the basic wave configuration at  the singularity. This 
means that, for example, if the ARP has an S-C-R pattern, then so does the GRP. Moreover, 
along any fixed direction from the origin the solution to the GRP approaches the solution to the 
A R P  sufficiently close to the origin (Prop. 7 of Reference 16). Thus, at least for relatively small 
source terms, the ARP can be used to resolve the discontinuity and the effects of the source terms 
added later. This is the rationale for the present approach. 

In solving the Riemann problem for the homogenous system, the fluid is essentially treated as 
an inert mixture, similar to Larrouturou and Fezoui." A significant difference is that in their 
approach the intermediate states can be obtained only iteratively. Even with a very good guess, 
this leads to an inefficient algorithm. In contrast, the intermediate states are obtained in the 
present method without any iteration, thus resulting in an efficient algorithm. 

4. INTERMEDIATE STATES AND SONIC POINTS 

As a first step towards deriving the intermediate points and sonic points, the eigenvectors along 
the various subpaths need to be derived. For convenience we prefer to use the primitive variables 
p ,  p, u and z. Along a simple wave corresponding to A1 we have 

dV 
-=el, 
dz 

where 
V= Cp, u, p, z]', el = [a', -alp, 1, olT 

Similarly, the other eigenvectors can be derived as 

e2 = [O, 0, 1, O]', e3 = [O, 0, 0, l]', e4 = [a', alp, 1, 0)'. (16W 
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With the vectors ei known, the intermediate points and sonic points can be derived in a number 
of different ways. The well known method of using Riemann invariants can be used, since there 
are three Riemann invariants along each of the subpaths. However, for yL # yR a solution can be 
obtained only by iteration, since it involves finding the root of 

apg +bpi  = c, 

where p* is the pressure at the intermediate states and a, 01, b, and c are functions of UL and UR. 
This is computationally expensive and not an option, since the whole point of using an ARS is to 
avoid iteration. However, the key observation made in Reference 14 is valid here as well: the 
intermediate points and sonic points need only be as accurate as the overall discretization error. 

If Ati denotes the strength of the ith wave, summing the contributions from all waves gives 
a linear equation for Ati if the vectors ei of (16) are constant vectors. Since only a local solution is 
required, a good approximation is obtained by freezing the vectors ei at v=( Vi+ Vi+ l)/2. Thus 
the equation for the strengths can be written as 

+ 

B * A t = A V =  Vi+l -Vi ,  (17) 
where B is a matrix with ei( r) as columns and i t  is a column vector containing Ati .  A unique 
solution for the wave strengths exists as long as the vectors ei are linearly independent, which is 
when 

det( B) = 2a 3/p # 0. 

Since this is always true, the wave strengths are unique and are obtained by inverting equa- 
tion (17). This gives 

2a26tl  =Ap-paAu, (W 
a2Ar2 =-Apfa2Ap,  (18b) 

At3 = Az, (W 
2a2At4 = Ap + paAu. (W 

Once the Ati  are known, the intermediate states are obtained as follows. Using the natural 
order or p-variant, we get 

Vi+l/ct= Vi+ATiei, Vi+2/4= Vi+1/4+A~2e2,  Vi+3/4= vi+2/4+A73e3. (19a) 

In practice, we obtained slightly better results if the same procedure was carried out from Vi+ 
and the average of the two results used. In other words, 

Vi + 3 /4 = Vi + 1 - A ~ 4 e 4 ,  Vi+ 2 14 = Vi + 3 /4-At3 e3 9 Vi+ 1 /4 = Vi + z /4 -A72 e2 9 (19b) 

and the averages of (19a) and (19b) are used as the intermediate states. Lastly, from equation (15) 
it follows that the state F+2/4 makes no contribution to Fi+llz  and thus need not have been 
computed. This will be important in the extension to many species. 

Next we turn to the determination of the sonic points which may occur on the simple wave 
paths corresponding to ,Il and A4. The sonic points can be obtained exactly using Riemann 
invariants, but the calculation involves several exponents. We follow a simpler procedure which 
works just as well. Assume that conditions are such that a sonic point exists on the wave path 
corresponding to 1, and let the endpoints of this path (which are known conditions) be denoted 
by the subscritps L and R. The slope of the eigenvalue at the two ends can be calculated as 
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A linear interpolation for the eigenvalue gives 

with the sonic point given by 

V,= VL(l-T,)+ VRT,.  (22) 

A more accurate estimate of the sonic point may be obtained by using the slope of the eigenvalue 
at the endpoints, given by equation (20). While a cubic fit is possible, a parabolic fit is simpler and 
as effective. A parabolic fit is obtained by solving for 7, from 

with the sonic point given by 

V, = VL + G,'?, +( VR- VL - G,')T:, (24) 

where G,! is the slope of 1, at VL. In most cases the second-order-accurate formulae gave better 
results. In some cases, equation (23) would not yield a real solution in the range 0 < 7, d 1 and in 
such cases the linear approximation was used. 

5. EXTENSION TO SEVERAL SPECIES 

We consider the extension of the results of the two earlier sections to include an arbitrary number 
of species denoted by n. In realistic hypersonic calculations the chemistry model generally 
includes a large number of species and it is cumbersome to work with n + 2 intermediate states. As 
shown below, only two intermediate states need be computed to obtain Fi+1/2,  leading to an 
efficient algorithm. 

If the primitive variable vector V is defined to be 

a linearly independent set of vectors can be taken to be 

el=[a2,-a/p, I , & .  . . , O ] ,  
e2=[0, 0, l,O, . . . , O ] ,  

e3 = CO, 0, 0, ,I, 0, . . . , 01 , 

efl+,=CO,O,0,0,0, * .  .,I13 
e,,+,=[a2, +alp, 1, 0, .  . . , O l .  

Inverting equation (17), we get as before 

2a2Az, =Ap-paAu, 

2a2 AT,, + = Ap -k paAu , (28) 

where, as previously, the coefficients are evaluated at the mean state V. The two intermediate 
states, which are the endpoints of the waves corresponding to u - a and u + a, can be calculated as 

(29) vi+ 113 = Vi + el 671  9 vi+ 2/3 = Vi+ 1 -en+ z A T ~  + 2,  
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and these are the only intermediate states required to calculate F i +  1,2 because the eigenvalue u is 
constant from Vi+  213 to Vi+  113 and the contributions from the intermediate segments cancel each 
other. A longer averaging procedure, similar to the one described earlier, may be used here also 
to obtain slightly better estimates of V i + 2 / 3  and V i + 1 , 3 .  

The determination of the sonic points proceeds exactly as described above. The slope of the 
eigenvalue is calculated by equation (20), which is used for the quadratic approximation. 

6. NUMERICAL COMPUTATIONS 

In the present study we considered the system of only two species described in Section 3. The 
Euler equations are integrated using the explicit one-step Lax-Wendroff scheme given by 

U"" = U " + A t U ; + * A t Z U : ,  (30) 
where the time derivatives are replaced by the spatial derivatives and the source term via the Euler 
equations@). To obtain a crisp and monotone shock representation, the notion of a TVD 
scheme, originally due to Harten, can be employed. Many versions based on this idea are 
available in the literature. The one used here interpolates monotonically the fluxes themselves to 
the cell faces. Since this procedure is considered to be more or less standard, we shall omit specific 
details about the second-order extension, which can be found in Reference 17 in great detail. The 
final expressions that result for U ,  and U,, are 

1 
Ax - G i - ( A + F i f - , + A + F ;  -&Ax) .  

The upwind-split flux differences A+F' are defined in Section 3. The matrix Gi is the Jacobian of 
S with respect to U evaluated at x i  and A i + l i z = ( A i + A i + 1 ) / 2 .  

The first two terms on the RHS of equation (31) are nothing but the first-order upwind formula. 
Second-order accuracy is then obtained in smooth (non-extremal) regions of the flow by adding 
the remaining higher-order correction terms, which are suitably timited via so-called limiter 
functions 4*.  Discussion of these limiter functions is outside the scope of this paper and the 
reader is referred to References 17 and 18. Unless otherwise mentioned, the superbee limiter was 
used in all calculations. For coarse grids and large source terms, different limiter functions can 
yield physically different results, as will be shown below. The natural order or the p-variant was 
used in all calculations. 

Non-dimensional units are used throughout the calculation; uo, L and p o  are reference 
quantities which non-dimensionalize all other quantities. Note that the non-dimensional reaction 
rate is none other than the Damkohler number and that Ah/u: is the non-dimensional heat 
release. In all test cases a uniform grid of 200 points was used. 

Initial tests with k and Ah set to zero were conducted on ideal gas shock tube problems. The 
idea in these tests was to determine how large an initial discontinuity could be resolved by the 
linearized approach described above. Figure 2 shows the results for a shock tube problem with an 
initial pressure jump of 100, an initial density jump of 30 and zero initial velocity everywhere. It 
can be seen that the resolution across the shock is excellent, while the resolution across the 
contact is not as good. A small glitch can also be seen at the site of the original discontinuity, 
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L ---- EXACI  L Q  
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L 
Figure 2. Ideal gas shock tube problem. Frozen solution 

indicating that the initial discontinuity is not yet fully resolved. Since this is a fairly extreme shock 
tube problem, the results suggest that the linearized approach is robust enough to handle most 
cases. 

The next test case is the ozone decomposition ZND detonation case of References 16 and 19, 
which consists of a moving detonation wave. The detonation wave consists of a shock wave facing 
the unburnt gas which raises the temperature of the gas beyond the ignition threshold. This 
initiates the reaction, which results in a monotonic decrease in pressure and density to their 
equilibrium values. In contrast to the previous case, y is assumed (perhaps unrealistically) to be 
constant during the reaction, so that y( 1) =y(O) = 1.4. For this example the temperature is defined 
to be T = p / p .  The reaction rate is of the form 

k = k,zH( T- Tc),  (33) 
where H is the Heavyside step function, which is a simplified form of the Arrhenius law. The other 
parameters (in CGS units) are 

Ah=-5.196 x lo9, ko=5.825 x lo9, T,= 1.155 x lo9. (34) 
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The initial conditions were taken as follows: for 0 < x < 5, 

p1 =8.321 x lo5, = 1.201 10-3, u1 =o, z1 = 1; (35) 
for 5<x<10, 

p z = 6 . 2 7 ~  lo6, p 2 = 1 . 9 4 5 ~ 1 0 - ~ ,  u2=4*162x104, z2=0. (36) 
Under these conditions a detonation wave propagates to the right at a speed 
Dcj = 1.088 x 10’ cm s- ’. In a reference frame fixed to the wave the downstream conditions are 
sonic and the fluxes of total energy, momentum and mass are the same as upstream. To follow the 
moving wave, the grid is moved uniformly at DcJ, which means we keep eliminating cells at the 
left boundary and adding new cells at the right boundary. The boundary conditions at the right 
are held fixed at upstream values and the boundary conditions at the left are taken to be those of 
the last eliminated cell. 

Colella et a1.” investigated a similar case with second-order Godunov and random choice 
methods and found that on coarse grids the numerical solution bifurcated from the physically 
correct strong detonation solution to a non-physical solution consisting of a weak detonation 
followed by a shock wave. The weak detonation moves at mesh speed-one cell per time 

, 

.. 

0 

-0 ::o 

0 

0 
I 1  I 1 1 . 1  I I I 

-0 2 + A h  8 10 

0 
mr 

.a 
0 

0 

a 

N 

Figure 3. Chapman-Jouguet detonation problem on a fine grid. Reaction zone = 10 cells 
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step-and is accompanied by complete heat release. On the basis of a simplified scalar model, the 
authors provide explicit conditions under which a spurious solution exists. 

The reaction zone is approximately 5 x  lO-’cm and for a fine grid simulation 
A x = 5  x s. These were the same values as used in Reference 16 for 
case 2a. The results after 2000 iterations are shown in Figure 3. The ZND spike is clearly 
resolved, though the pressure peak is about 3% lower than the approximate peak value quoted in 
Reference4. One reason for this discrepancy is that our TVD approximation is only first- 
order-accurate at  smooth extrema. Other than for this small discrepancy, our results compare 
well with those presented in Reference 16. 

Figure 4 presents results for the coarse grid case, where the reaction zone is approximately 
one-tenth of a cell. Here A x =  5 x cm and At = 10- l o  s, which correspond to case 4a of 
Reference 16. The results after loo00 iterations are shown in Figures 4(a) and 4(b) using the 
superbee and van Leer limiters respectively. It can be seen that the superbee limiter gives the 
correct CJ solution while the van Leer limiter gives the spurious weak detonation solution. This 
somewhat surprising result verifies the theoretical results of Reference 19 in that spurious 
non-physical solutions exist on coarse grids. Aside from this, our results also seem to be smoother 
than those obtained in Reference 16. 

cm and At = 5  x 
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Figure qa). Chapman-Jouguet detonation problem on a coarse grid. Reaction zone= 1/10 cell, superbee limiter 
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Figure qb). Chapman-Jouguet detonation problem on a coarse grid. Reaction zone= 1/10 cell, van Leer limiter. 
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Before proceeding to the next test case, we would like to make several comments about the 
results obtained above. To confirm that the results observed were not due to the approximations 
used in determining the intermediate and sonic points, we performed the coarse grid computa- 
tions using exact Riemann invariants. The results were identical to those presented above. In 
addition, the first-order upwind scheme also gave the spurious weak detonation solution, which 
suggests that the spurious solution is obtained with the more dissipative schemes. Lastly, if the 
problem is solved in a reference frame moving with the detonation wave, the spurious solution is 
not observed. 

The last test case consists of steady flow through a divergent nozzle with an imbedded normal 
shock. For this case the source term in equation (8) is 

A 
A 

S =  - L [ ~ u ,  p ~ ’ ,  pEu+pu ,  ~ u z ] ~ + [ O ,  0, 0, - p k l T .  (37) 

The flow is frozen upstream of the shock and shock-induced reactions take place downstream of 
it. The area distribution is given by 

A(x)  = 2.0 + 0.2x, 0 < x < 10. (38) 
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The inflow Mach number was chosen so that the throat area was unity. Since the inflow is 
supersonic, all primitive variables were prescribed at inflow. At outflow the static pressure was 
prescribed and the other primitive variables were extrapolated. The value of the exit pressure was 
chosen so that in the frozen case the upstream shock Mach number was 2.5. The frozen solution 
was used as the initial condition for the computations. 

The following non-dimensional parameters were used: 

y(O)= 1.6, y ( l ) =  1.4, Ah=- 1.0, k o =  1.0. (39) 
The reaction rate is given by equation (33) with the ignition temperature T,= 1.12To, where To is 
the static temperature of the gas at inflow. 

The computed profiles of internal energy (total internal energy e), pressure, velocity and mass 
fraction are shown in Figure 5. Also shown for comparison is the frozen solution. The non- 
equilibrium solution shows a weaker normal shock followed by a fairly large reaction zone, 
leading to equilibrium, conditions at the exit. While an 'exact' solution to this problem is tedious, 
two analytical integrals are immediately available. These were found to be essentially constant 
over the length of the nozzle, confirming the accuracy of the computed numerical solution. The 
steady shock is resolved in two intermediate points. If the nozzle is viewed as a supersonic engine 
inlet, the example illustrates the role of combustion in promoting 'inlet unstarts'. 

Figure 5. Divergent nozzle problem. Reaction zone =20 cells. 
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7. CONCLUSIONS 

In this paper we have presented an efficient extension of the Osher scheme to non-equilibrium 
reacting flows and applied the scheme to several reacting flow problems. The extension proceeds 
by using a Riemann solver for the homogeneous system and adding in the effects of the source 
terms explicitly. The method has the advantage that no iteration is required to find the 
intermediate states. Computational results for several test problems have confirmed the robust- 
ness, efficiency and accuracy of the scheme. 

On coarse grids it was observed that a change of limiter triggered a change from a CJ 
detonation solution to a spurious weak detonation solution. It would be very interesting to see 
whether some type of splitting of the source terms might ensure that the physically correct 
solution is obtained in all cases. This is, however, beyond the scope of this paper. 
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